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Abstract: There are many depletable resource planning problems associated with convex cost function. The Greedy algorithm has been 
used to find the optimal solution for such problems. But exploiting that algorithm requires a large bulk of computations to find the optimal 
solution. Thus, in this paper we have established two piecewise linear estimators for the convex cost function:  an inner intersection of the 
function values and an outer tangent. A practical experiment was conducted to compare the performance of the two presented estimators and 
it was observed that the outer tangent performs more efficiently than the inner intersection. The execution time of the Greedy Algorithm and 
the estimation algorithm in this paper have been compared, and the results reveal that our algorithm works 54 times faster than the Greedy 
Algorithm.  
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1 INTRODUCTION 

It is assumed in many resources planning problems that the 
extraction cost for exhaustible energy sources is convex, 
and distribution and inventory related cost are linear 
(Modiano et al., 1980). This results in a total convex supply 
cost. Thus, there is a need for a technique to solve a model 
consist of convex cost. The computational complexity of 
these problems has been taken into account and several 
algorithms have been proposed for solving them (Magnanti 
et al., 2006). 
 
Minimizing transportation or supply cost functions often 
involves substituting the non-linear function by a piecewise 
linear estimation (Devine et al., 1972). In order to 
approximate more precisely, we need to increase the 
number of pieces. A traditional example of such an 
algorithm is the convex cost flow scaling algorithm (Ahuja 
et al., 1993). 

Nonlinear convex cost functions are considered to be 
modeled as a piecewise linear function various contexts. In 
this framework, resource constraints are specified to 
accommodate the possibility that the usage of shared 
resources depends on the production quantity by source or 

cost segment. This model was formulated by Bowman as a 
transportation problem, where there are multiple periods and  

 

multiple production option, but only one item and one 
resource type (Graves, 1999). The transportation problem is 
an essential problem in optimization and is well known that 
it is polynomially solvable even when the flows are required 
to be integers (Bachelet et al., 2003, Kuno et al.,2007 and 
Arkin et al., 2004). The demand constraints in the stochastic 
transportation problem, have been replaced by nonlinear 
convex costs as functions of the total inflow into each 
demand point (Cooper et al., 1997 and Holmberg, 1984). 

Convex piecewise linear functions are in some cases used to 
estimate a combination of discontinuous cost functions. 
Salman et al. (2007) conducted an experiment in which 
cable costs were closely approximated by the piecewise-
linear convex hull, using SOR (Successive Over relaxation 
Method). 

Convex cost minimization problems which are obtained 
from combined model networks, such as a two mode 
(private car and public transit) traffic model (Florian and 
Spiess 1983) can be efficiently solved by adaptation of the 
linear approximation method (Hall, 1999). A combined 
form in which the arc costs are piecewise convex, with 
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decreasing derivatives at breakpoints is considered in 
Mahey et al., (2007). 

Modiano et al. (1980), proposed a dynamic model that 
determines the economic supply for a depletable source. 
They employed a linear programming model to analyze 
energy sources such as gas, oil, and coal in energy 
producing divisions. Stoecker et al. (1985) introduced an 
effective technique for irrigation systems investment 
planning. The corresponding method utilizes linear and also 
dynamic programming as means for achieving the 
maximum future returns.  
 
A water recycling problem is demonstrated by Hartl et al. 
(2006). Using linear programming methodology, they 
developed a model which enables them to determine the 
optimal use of configuration pumps. Moreover, in this 
method it is possible to obtain the solution through sorting 
based on cost elements.  
 
In this paper we introduce and compare two convex 
piecewise-linear estimators for the convex supply cost: an 
inner intersection and an outer tangent to the convex cost 
function. We show that are proposed algorithm, compared 
with the Greedy Algorithm or also known as the Convex 
Cost Algorithm (Johnson et al., 1972), provides a far more 
efficient way to solve problems associated with convex cost. 
Our approximation approach, while being almost as precise 
as the Greedy Algorithm, requires less computation and 
execution time 

The paper is organized as follows. The next section presents 
the depletable resource model which is associated with 
convex extraction cost, and thus overall convex cost. The 
third section introduces our piecewise linear estimation 
approach, and the algorithm for creating a computer 
program for this purpose. Two estimators for the convex 
cost function are presented in this section. In the forth 
section, we have conducted a practical experiment to 
demonstrate the results provided by our piecewise linear 
estimation of the convex cost. Some relevant analysis are 
also provided in this section. The paper is concluded in the 
last section. 

2 STATEMENT OF MODEL 

The model utilized in this paper depicts a scheduling policy 
in order to incur demands for depletable commodities over a 
finite planning horizon. The process of supplying these 
commodities is associated with costs of supply, conversion 
and distribution. For each period t = 1,...,T, we aim to 
schedule the supply time of demands in a way to optimize 
costs as well. 

The following notation is needed: 
 

=tr  supply scheduled for period t   ),...,2,1( Tt =
=td  expected demand in period t 

=ti  net inventory at the end of period t 
=),( ttt irK  cost of producing units and having an ending 

net inventory of  in period t 
tr

ti
=)( tre  accumulative extraction cost 
=)( trf  other related costs of conversion and distribution 
=)( trh  inventory costs 
=)( trg  total supply cost 

Considering the resource planning point of view, it is 
assumed the inventory related costs depend only on the net 
inventory and the supply costs depend only on the supply 
rate. Thus we can write: 

)()()(),( tttttt ihrfreirK ++=  (1) 

The extraction cost function  for the depletable source 
is assumed to be convex and increasing, and  is a 
linear function of supply. Thus, we define the overall cost of 
supply by the following equation. 

)( tre
)( trf

)()()( ttt rfrerg +=  (2) 

The total cost, , is also convex regarding supply of 
depletable sources. Also, we suppose that shortages are 
backlogged, thus  can take on negative values as well as 
positive values. The objective of this linear programming 
problem is therefore supply planning in order to incur 
demands of each time period t, and minimize overall cost. 

)( trg

ti

The Greedy algorithm can be utilized to schedule supply 
over a finite planning horizon. This algorithm suggests to 
consider the T possible alternatives for the production time 
of each unit of demand in each period. The entire 
incremental cost from extraction, conversion, distribution, 
inventory and backlogging is then computed and supply 
plan is adjusted to the alternative with the minimum cost. 
This process is continued for all units of demand in each 
period. This algorithm can be employed in cases with a 
convex supply cost function. However, implementing this 
algorithm, in many cases requires burdensome computation 
whereas minimizing numerical computations might be a 
substantial objective in many cases.  

On the other hand, for piecewise linear cost functions, the 
transportation tableau (Taha, 1982), can be used in the 
context of resource planning when a problem has a convex 
piecewise-linear supply cost and linear inventory holding 
and backlogging costs. When backorders are allowed, the 
transportation algorithm is a more efficient way for solving 
the problem, than the convex cost algorithm. However, 
when backlogging is not permitted, convex cost algorithm 
swiftly provides the solution (Johnson, 1974). 

The transportation model can be portrayed by a network 
with m sources and n destinations. A source or a destination 
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is represented by a node. The arc joining a source and a 
destination represents the route through which the 
commodity is transported. The amount of supply at source i 
is  and the demand at destination j is . The unit 
transportation cost between source I and destination j is . 
Let  represent the transported amount from source i to 
destination j; then the LP model representing the 
transportation problem is given generally as: 

ia jb

ijc

ijx

Minimize  (3)                                           ij

m

i

n

j
ij xcz ∑∑

= =

=
1 1

         

Subject to 

,
1

i

n

j
ij ax ≤∑

=

     (4) mi ,...,2,1=

∑
=

≥
m

i
jij bx

1

,       nj ,...,2,1=  (5) 

0≥ijx     for all i and j (6) 

 
A more compact way to represent the transportation model 
is to use the transportation tableau which is a matrix form 
with its rows representing the sources and its columns the 
destination. The cost elements  are summarized in the 
northeast corner of the matrix cell (i, j) (Taha, 1982). 

ijc

The following procedure shows the required steps for 
solving a dynamic programming model which has a 
transportation model form. 

1. Satisfy demand in the first period by the least cost source. 
2. Adjust capacities to indicate amounts remaining for step1. 
3. Satisfy demand in the second period by the least-cost 
sources. 
4. Adjust capacities to indicate amounts remaining after 
step3. 
5. Repeat steps 3 and 4, for periods 3,4,…,T (Johnson, 1974) 

In the next section, we present an algorithm for estimating 
two approximations for a convex cost function in which the 
concept of transportation is employed to minimize the cost 
and omit the large bulk of computations of the greedy 
algorithm. 

3 OUR APPROXIMATION APPROACH 

For the convenience of the transportation algorithm 
especially when the supply cost is a convex non-linear 
function, we estimate a non-linear convex supply cost 
function with a convex piecewise-linear function.  Thus, the 
problem can be solved more efficiently by the transportation 
algorithm rather than the convex cost algorithm. 

In this paper we estimate a convex function using two 
piecewise-linear functions as an inner intersection, and an 
outer tangent to the convex function. We then solve the 
model via the transportation algorithm. If these two 

functions are chosen accurate enough, then the results are 
very close to that of a convex cost algorithm. The accuracy 
is relevant to the length of the increment we choose for 
dividing the supply axis into even pieces.  )(r

Consider the supply and inventory cost function. Here, we 
assume that the supply cost,  is convex, and the net 
inventory cost is linear, thus  would be convex as a 
whole. Moreover, the net inventory cost is separated into 
two linear functions which represent the inventory carrying 
cost h  and the backorder cost as shown in the 
following formulas. 

)(rg
),( ttt irK

)( t
+ )( tt ih −

t i

)()()(),( ttttttttt ihihrgirK −+ ++=  (7) 

iih tt ⋅=+ λ)(  (8) 

)( tt ih −  = i⋅π  (9) 

As previously mentioned, we use two piecewise-linear 
functions, as the inner intersection and outer tangent to 
estimate the non-linear convex supply cost. In order to do so, 
we should choose an increment for the supply and divide the 
supply axis into even pieces. Then we can obtain the 
inner intersection by joining the function values in the break 
points. The outer tangent however, can be reached by 
drawing tangent lines on the curve, in the break points. 
Figure 1 illustrates the convex supply cost function and the 
two piecewise-linear estimators. The piecewise-linear 
function, , is the inner intersection and , , is the outer 
tangent to the non-linear convex function .  

)(r

1g 2g
)( tt rg

 

 
 

Figure 1.  The convex  supply cost function  and the two 
piecewise linear estimators. 

 
 
The stepwise algorithm has been summarized in the figure 
below for estimating the two approximations of the convex 
cost function. 
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              Figure 2. Our estimation algorithm 

 
 
 
 

4 PRACTICAL EXPERIMENT 

In order to justify the performance of the presented 
algorithm, an experiment was conducted for a cost function 
which was obtained by fitting a quadratic polynomial to the 
data provided by Sangrud coal mine in Iran for the year 
2005. The cost function is convex because its marginal 
values are increasing. The following equation demonstrates 
the corresponding convex cost function which attains cost in 
$ for input supply amount in ( Joules) to be 
scheduled in a six month period T=6.  

610 2010

 
Inputs 
 
   Number of periods: T 
   Demands of each period:  ]....[ 1 Tt ddd =
   Convex cost function  )(rg
   Backorder costs: c 
   Inventory of each period  ],...,[ 1 Tt iii =
Begin 
 

     Compute average and maximum of demands:  
and  . 

〉〈 td

maxd

     Initialize supply increment as ⎣ ⎦〉〈=Δ tdr 2log2  
     Assume supply range 0  such that ∃  

. 
frr ≤≤ ,Nn∈

maxdrnrf ≥Δ×=

     Assume a tolerance of estimation error: tol. 
 
While  tolrr >− 12

 
   Assume piecewise supply range: 

. ],...,,0[1 frrr Δ=
   Compute piecewise cost  and marginal 

costs m . 
)( 11 rgg =

1C

   Satisfy  with a transportation tableau of 
marginal costs m  and capacities equal to 

td

1C

1+Δr  for each supply Interval, considering i  
and . 

t

th
   Compute the total cost . 1K
   Compute tangents to  at each break point. )(rg
   r  ],...,,0[1 frr

5.0)(62.0)(8.9)( 24 ++= − rrerYg  (10) 

In order to evaluate the performance of the algorithm, the 
corresponding total costs for the two estimators which are 
piecewise linear cost functions  and  were estimated. 
The estimation of overall costs  and  via the two 
estimators was done using the algorithm elaborated in 
Figure 2. The experiment evaluates the algorithm for the 
cost function, , for all 6 periods, .  

1g 2g

1K 2K

)(rYg 6,...,1=t

The following suppositions are to be considered regarding 
the experiment. 

• The demands to be satisfied were chosen as 
28] 17, 15, 25, 35, [10,=td . 

• The initial inventory was set to zero. 

• Backorder costs were assumed linear and equal to 
                     

where  indicates marginal cost for estimated 
piecewise linear cost function.  

}max{m*0.3*].[3,2,1,1,1 C=th

Cm
Δ=

   Find new set of break points r  and 
corresponding  located at incidents of 
tangents. 

2

2g

   Satisfy  with a transportation tableau of 
marginal costs .. 

td

2Cm
   Compute the total cost . 2K
   Set new increment to . 2/rr Δ=Δ
 
End 
End 

• The amount of supply increment rΔ  was varied 
from initialized value (refer to Figure 3.) to 1. The 
variation of  and  is depicted in Figure 3. 
with a logarithmic scale of .  

1K 2K

2log

It can be observed from the graph that by decreasing the 
increment value, the two estimators incline to the actual 
convex function. However, it can be obtained that is a 
better estimator because, it inclines to the actual cost 
function value more swiftly than . A more precise 
measure such as the “relevant error” could be used to 
demonstrate this statement. When comparing the 
corresponding factor of these two estimators, we discover 
that the relevant error of diminishes considerably faster 
that that of . Thus, we can conclude that the 
estimator, , which was obtained by outer tangents of the 
convex cost function, gives a better approximation for the 
convex cost function. 

2K

1K

2K

1K

2K
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 Figure 3. Two estimations of total cost for the cost function Y : The solid line indicates  intersection 

estimation ( ) and the dashed line shows tangent estimation ( ) for the convex cost function. 
)(rg
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A reason for the efficiency of in comparison with  
could be that the slopes of are less steep than that of . 
As we realized in the procedure of the transportation tableau, 
the demands are satisfied base on their marginal costs. The 
marginal costs are formed in with an increasing order. Thus, 
first the demands with smaller costs are met. In other words, 
the marginal costs with less steep slopes are first satisfies. 
So as we can see from the graph in Figure 3. the marginal 
cost for estimator are less steep and thus would be 
incurred earlier than that of . This causes to be able 
to dampen its relative error more quickly and reach 
theactual convex cost function value. 

2K 1K

2K 1K

2K

1K 2K

It is interesting to note that the execution time for our 
estimation algorithm, using MATLAB software with normal 
CPU, was 0.13 sec. for one increment. However, when we 
made a computer program for the convex cost algorithm 
under the same conditions, we observed that the execution 
time was 7.02 sec. Thus, we can observe that our proposed 
algorithm considerably minimizes the large amount of 
computations associated with the greedy algorithm.   

5 CONCLUSION  

 
In this paper we introduced a method for approximating a 
convex supply cost function with two convex piecewise-
linear functions. One of these piecewise linear estimators 
represents the inner intersection and the other one portrays 
the outer tangent of the function. Moreover, it was observed 
that the two estimators incline to the main convex function 
by decreasing the length of the production increment. 

 The experiment showed that the outer tangent,  gives a 
better estimation of the convex cost function than the inner 
intersection, . The reason could be that the slopes of 

are less steep than that of . As we realized in the 
procedure of the transportation tableau, the demands are 
satisfied base on their marginal costs. The marginal costs 
are formed in with an increasing order. Thus, first the 
demands with smaller costs are met. In other words, the 
marginal costs with less steep slopes are first satisfies. So as 
we can see from the graph in Figure 3. that the marginal 
cost for estimator are less steep and thus would be 
incurred earlier than that of .  

2K

1K

2K 1K

2K

1K

The advantage of the proposed algorithm is omitting a large 
bulk of computations of the Convex Cost Algorithm, which 
has not been examined adequately in previous literature. 
Our experiment revealed that the estimation algorithm 
presented in this paper, works 54 times faster than the 
Greedy Algorithm (Convex Cost Algorithm). The defined 
estimators provide two approximations to the corresponding 
convex functions. Moreover, a desired precision can be 
obtained by adjusting the algorithm parameters. 

As for future research, we recommend a more precise 
mathematical proof of the algorithm which is proposed by 
the paper and its numerical solutions are provided. Thus 
further work could be concentrated on a mathematical 
representation of inclination of two total cost functions as 
approximations to the convex cost function. Also, it can be 
shown that the approximation error decreases with 
tightening the increment length, specially for the outer 
tangent, . 2K
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